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We study systems with periodically oscillating parameters that can give way to complex periodic or nonpe-
riodic orbits. Performing the long time limit, we can define ergodic averages such as Lyapunov exponents,
where a negative maximal Lyapunov exponent corresponds to a stable periodic orbit. By this, extremely
complicated periodic orbits composed of contracting and expanding phases appear in a natural way. Employing
the technique ofe-uncertain points, we find that values of the control parameters supporting such periodic
motion are densely embedded in a set of values for which the motion is chaotic. When a tiny amount of noise
is coupled to the system, dynamics with positive and with negative nontrivial Lyapunov exponents are indis-
tinguishable. We discuss two physical systems, an oscillatory flow inside a duct and a dripping faucet with
variable water supply, where such a mechanism seems to be responsible for a complicated alternation of
laminar and turbulent phases.
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I. INTRODUCTION

When studying deterministic dynamical systems, it has
become practice to distinguish between chaotic and(quasi)
periodic solutions, where chaos has been seen as novel and
strange behavior. We study a class of dynamical systems,
where such a distinction is not useful. Depending on control
parameters, our systems will either generate stable periodic
orbits or they will behave chaotically, but these two types of
motion will be essentially indistinguishable from each other
both on computers(due to finite precision) and in real ex-
periments(due to weak noises).

Seasonal variations are a prominent source of slow peri-
odic parameter fluctuations in biological, ecological,
geochemical, and geophysical systems. But also in many
technical and physical situations, slow periodic oscillations
of system parameters do occur. Speaking of time-dependent
parameters, we imply that there is no feedback from the sys-
tem under study to the variation of the parameters, whose
time dependence can either be considered as given(nonau-
tonomous situation) or can be ruled by its own periodic au-
tonomous dynamics. Moreover, we focus on situations where
the typical time scales related to the system dynamics for
fixed parameters are much faster than the time scale related
to the parameter variation, as it is typical of many processes
subject to seasonal variations. The opposite case, where both
time scales are comparable, has been studied as an open-loop
control mechanism[1,2].

In what follows, we discuss a scenario where slow har-
monic parameter variations introduce an alternation of ex-
panding and contracting phases. We will show that ergodic
averages can be performed as usual and hence the motion in
the long time limit is clearly classified to be either periodic
or chaotic. However, as our analysis will show, in practical
applications, chaotic motion will be indistinguishable from
periodic motion, both in numerical simulations and in experi-
ments. In the latter case, this is another example of “stable

chaos”[3]. This indistinguishablility implies a robustness of
the phenomenon despite the fact that there are parameter
regimes where stable periodic motion and chaos are both
supported by a dense set of parameters.

This rather unexpected behavior is shown to exist in nu-
merical experiments of an oscillating flow inside a duct and
a dripping faucet with variable liquid supply.

II. MAP WITH PERIODIC PARAMETER VARIATIONS

Many physical experiments and the corresponding model
systems possess solutions which, due to dissipation, relax to
rather uninteresting fixed points. Such systems are often ex-
posed to a periodic driving, such as electric resonance cir-
cuits. In particular, when the system without driving has a
two-dimensional phase space, chaos can only appear with the
driving term.

This paper deals with a very different class of driven sys-
tems; we assume that our system without driving can behave
chaotically, depending on the values of a control parameter.
This parameter is then varied periodically, with a period that
is much longer than the time scale of the internal dynamics
on which the autocorrelation function in the chaotic regime
would relax, or which would govern the relaxation to a stable
fixed point in parameter regimes where it exists. Hence, the
temporal dependence of the control parameter has no influ-
ence on the short time dynamics of the system, but it causes
transitions between different dynamical behaviors which
might exist for different values of the control parameter.

In what follows, we choose the quartic mapf given by

xn+1 = fsa,xnd = 4axns1 − xndf1 − axns1 − xndg s1d

with 0,aø4. This map has the interesting property that for
a=ac=3.375, a tangent bifurcation occurs where out of a
chaotic region that covers the whole[0, 1] interval a period-1
window appears. However, other maps can be also be con-
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sidered, for example the logistic map for values of the con-
trol parameter near a period-3 window.

Imposing a temporal dependence on the control parameter
leads us to consider the two-dimensional skew autonomous
system,

fn+1 = fn + v,

xn+1 = f„asfnd,xn… = 4asfndxns1 − xndf1 − asfndxns1 − xndg,

s2d

whereasfnd=a0+a1 cosfn, a0 is chosen nearac, a1!1, and
v=2p /N, N@1. A small value ofv leads to a well-defined
time scale separation between the parameter variation and
the dynamics of the system while the choice ofa0 and a1
ensures thata oscillates from values where the unperturbed
map of Eq.(1) is chaotic to values where it has a stable fixed
point.

A typical sequence of iterates of Eq.(2) (after discarding
a transient) is shown in the top panel of Fig. 1. We see an
alternation between irregular fluctuations ofx and regular
episodes due to the oscillating values ofa shown in the bot-
tom panel. Due to the slowness of the change ofa, the tra-
jectory can relax toward the stable fixed point for those val-
ues of an where it exists, whereas it follows an irregular
trajectory foran&3.375, where the map of Eq.(1) is chaotic.

Since thef dynamics is not mixing, this system clearly
has (at least) one invariant measure in its two-dimensional
phase space for everyf0, on which ergodic averages are well
defined. The Jacobi matrix of Eq.(2) is triangular, which
immediately shows that one Lyapunov exponent(corre-
sponding to thef dynamics) is zero, whereas the otherl
=klnl is found as an average over an infinitely long trajec-
tory of the instantaneous stretching factorsln (middle panel
of Fig. 1) defined by

ln = logU ]f„asfnd,xn…

]xn
U .

Assuming ergodicity,l can also be found as an average of
the stretching factor over the invariant measure. The seem-
ingly intermittent dynamics shown in the upper panel of Fig.
1 has a well-defined nontrivial Lyapunov exponent, whose

sign depends on the details of thex dynamics. The alterna-
tion between unstable and stable phases is different from the
typical intermittency scenarios[4]. The contributions of the
stable and unstable phases to the Lyapunov exponent have a
sensitive and subtle dependence on the choice ofa0 anda1,
as we show in Sec. VI.

III. INDISTINGUISHABILITY BETWEEN CHAOTIC AND
NONCHAOTIC ORBITS

For the map of Eq.(1), almost any initial condition with
a.ac, ua−acu!1 settles after a transient on a fixed point
x̂sad. On the other hand, fora,ac, ua−acu!1, the invariant
set is one-dimensional for a dense set of parameter values,
but shows type-I intermittency because of the closeness to
the tangent bifurcations. For the map of Eq.(2) during one
period of the auxiliary variablefn, the parameterasfnd al-
ternates between the periodic and chaotic regime of the map
of Eq. (1) and thereforel has contributions with negative
and positive signs. Depending on which contribution has a
larger modulus, the overall dynamics is either chaotic or not.
This in turn depends on the values ofa0, a1, andv.

During the iterates where the trajectory looks regular and
is near tox̂sad, the fixed point of the map of Eq.(1), the
tangent space dynamics is contracting, and we call the accu-
mulated contraction factorfc. During the iterations when the
trajectory looks irregular, its tangent space dynamics is es-
sentially expanding, and we call the accumulated expansion
factor fe. Then, roughly, the Lyapunov exponent isl
<klnufcu+lnufeul, where k¯l now denotes the average over
successive periods off. If we start two trajectories with a
distancee at the beginning of the irregular phase, at its end
their distance isefe. This distance will shrink during the
regular phase, and at its end will beefefc. Hence, if fefc on
average is smaller than unity, two trajectories will approach
each other, and finally will be indistinguishable.

This alternation between contracting and expanding epi-
sodes is clearly visible in Fig. 1. A stable periodic orbit thus
is as irregular as a chaotic solution, but its irregular segment
repeats itself exactly in every period of oscillation of the
parameter a, whereas for a trajectory with a positive
Lyapunov exponent it does not. Hence, this system can cre-
ate arbitrarily complicated periodic orbits, since by the
choice of v one can determine the period length and also
how many points of the periodic orbit are in the irregular
regime. When thefn dynamics is quasiperiodic instead of
periodic(by choosingN as an irrational number), also orbits
with negative Lyapunov exponent have nonrepeating irregu-
lar segments. By visual inspection, these cannot be distin-
guished from orbits with a positive Lyapunov exponent.

IV. THE STROBOSCOPIC VIEW

The special dynamics offn hinders the two-dimensional
map of Eq.(2) from having a fixed point. The shortest peri-
odic orbit can have lengthN when v=2p /N. Therefore, it
makes sense to study the composition ofN successive iter-
atesFsxd=sn=1

N f(asfnd ,xn). When the Lyapunov exponent
of Eq. (2) is negative,F should have a stable periodic orbit

FIG. 1. Two hundred iterates of the map Eq.(2) for a0=3.4,
a1=0.1,v=2p /100(top panel), the instantaneous stretching factors
ln (middle panel), and the parameteran (bottom panel).
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or fixed point, whereas it has only unstable periodic orbits
and chaotic solutions for positive exponents. In Fig. 2, we
show the graph ofF for three values ofa0. For a.ac, a
−ac!1, Fsxd has an almost superstable fixed point. These
fixed points are generically born and eliminated by tangent
bifurcations, together with their unstable counterparts. For
every initial phasef0, we have a different stroboscopic map
Fsxd. However, they are all topologically conjugate. For our
choice of the variation ofasfnd, however, the existence or
absence of a stable fixed point can best be seen whenf0
<0, where each orbit of the system Eq.(2) assumes values
close to the fixed point offsx,ad in Eq. (1) for fixed a<a0

+a1.

V. NOISE AND ROUND-OFF EFFECTS

The results described above, and in particular the distinc-
tion between motion corresponding to negative and positive
Lyapunov exponents, is correct only in the abstract math-
ematical setting. On a computer, the finite precision of the
internal representation of real numbers can enforce the mo-
tion onto a complex periodic orbit although its Lyapunov
exponent is positive. This happens when the contraction fac-
tor fc during a contracting phase is too strong, so that at the
end of this phase the trajectory has no memory of the previ-
ous expanding phase. For typical values ofa0 and a1, we
found numerically that orbits with a positive Lyapunov ex-
ponent became periodic when the contracting phase con-
tained more than 30 iterates. If these phases are shorter, ei-
ther because the periodN is small enough or becausea0 and
a1 are chosen to be inside the chaotic regime, orbits with
positive Lyapunov exponents are nonperiodic, as expected.

Hence, with finite precision and largeN, one cannot decide,
without computation of the Lyapunov exponent, whether the
system has a stable periodic orbit or not.

In an experimental realization, instead of computer round-
off errors, there is external noise coupled into the system.
Equation(1) then has to be modified by adding white noise
sjn, where 0,s!1, kjnjn8l=dn,n8, andkjnl=0. This has no
visible effect on chaotic solutions of Eq.(2), but it does
destroy the periodicity of stable periodic solutions. Inside the
expanding and hence irregular sections, noise is exponen-
tially amplified and creates orbits which appear chaotic. Sys-
tems like Eq.(2) therefore have periodic orbits which are
extremely sensitive to external noise, despite linear stability.

VI. PARAMETER DEPENDENCE

The rather complex sequence of tangent bifurcations lead-
ing to the creation and destruction of the stable periodic or-
bits causes the orbits to depend sensitively on the system
parameters, so that there is a complicated flipping from pe-
riodic to chaotic motion as a function of every single param-
eter as illustrated in Figs. 3–5. In the first one, we show the
Lyapunov exponentl as a function ofa0 (a1 and N fixed).

FIG. 2. The graphF as defined in the text. For(a) a0=ac

=3.375 there is a tangent bifurcation, for(b) a0=ac+0.000 05 an
almost superstable fixed point, and for(c) a0=ac−0.000 05 many
unstable fixed points. We useda1=0.1 andN=100.

FIG. 3. The Lyapunov exponentl as a function of the parameter
a0 with a1=0.1, N=100. The inset shows the values ofl for a0

P f3.35,3.4g.

FIG. 4. Lyapunov diagram withN=100. Black dots correspond
to a negative Lyapunov exponent, white to a positive one. A total of
65 536 dots are drawn. A cut ata1=0.1 corresponds to the previous
figure.
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The rapid change from chaotic to stable periodic solutions
leads us to assume that both types of behaviors are supported
by a dense set of parameters. The same follows from Fig. 4,
where we show the Lyapunov diagram where white(black)
dots correspond to a positive(negative) value ofl [5]. There
are clearly two regions wherel has a definite sign and an
intermediate one where slight changes ofa0 or a1 have a
dramatic effect on the dynamics. We determined the fractal
dimension of the boundary between stable and unstable so-
lutions by finding the scaling of the number ofe-uncertain
points ase is varied[6,7]. A point sa0,a1d is e-uncertain if in
a neighorhood of radiuse there exists at least one point
where the Lyapunov exponent has an opposite sign to the
one evaluated atsa0,a1d. In Fig. 5, we show those points of
the previous figure that aree-uncertain fore=10−7. From the
scaling of the number of uncertain points withe, we found
the box counting dimensionD0 of the boundary between
chaotic and stable solutions to beD0,1.985. This result
gives quantitative support to the idea that both stable and
unstable orbits have a dense set of parameters. We also found
that D0,2 for N.100 and also forN,20 while it has a
minumum valueD0,1.8 for N,30.

VII. OSCILLATORY FLOW IN A DUCT

As a first example that displays the behavior discussed
previously, we briefly present results of numerical experi-
ments of an oscillatory flow in a duct filled with fluid. This
flow can be generated by imposing oscillatory pressure or
velocity fields at the ends of the duct with suitably defined
phase lags. The stability of these flows can be described in
terms of two nondimensional parameters, namely the oscil-
latory Reynolds numberRd and the Stokes parameterl.
These are defined byRd=Ud /n and l=D /d, whereU is a
characteristic velocity,n the kinematic viscosity of the fluid,
D a characterisic distance of the duct, andd the Stokes pen-
etration depth. This last quantity is defined byd=În /2v
with v the frequency of the oscillation. It is a well estab-
lished fact that zones of distinct dynamical qualitative behav-
ior can be identified in thesRd ,ld space. Specifically, it has
been experimentally observed that forlù2 and Rd,500,
the flow is laminar, while forRd.500, the flow inside the

duct is laminar for the phase intervals where the velocity is
small while bursts with a frequency much larger than the
forcing appear near the end of the acceleration phase[8]. As
Rd is increased, the phase interval where high-frequency os-
cillations are present gets larger, but it never covers the cycle
entirely. The origin of the high-frequency oscillations is the
generation of vortices due to the instability of the laminar
flow. Numerical results agree with the experiment[9].

In particular, Fig. 6 shows the axialu and transversalv
velocities in the middle of a duct. As can be observed, when
the velocity is close to zero, the trace is smooth, indicating
laminar flow, however high-frequency oscillations appear
when the velocity reaches its maximum absolute value in
each cycle. Takingvv=U /D as the lower limit of the char-
acteristic frequency of the vortices, the ratio of the vortices
frequency to the forcing frequency,vv /v, is 2Rd /l, which
for this example is 768. This indicates that the changes in the
driving force are slow compared with the internal vortex dy-
namics corresponding with the conditions discussed in the
previous sections.

VIII. DRIPPING FAUCET WITH VARIABLE SUPPLY

Our second example describes the dynamics of a dripping
faucet with variable liquid supply. This problem with con-
stant liquid supply has been studied extensively[10]. The
time interval T between successive drops shows a compli-
cated bifurcation diagram as the water supplye increases.
There are two studies that are important in the context of the
present analysis. The model presented by Fuchikamiet al.
[11] is relevant because it is built on sound physical phenom-
enology, but unfortunately it is not simple, and long time
calculations involving many drops are extremely computing-
intensive. On the other hand, the model presented by Coullet
et al. [12], which is based on the former, is useful since it is
simple and can be used for exploring the long time behavior.
Both models can be adapted to analyze the system when the
liquid supply varies as a harmonic function of time and they
display a similar behavior with constant and variable liquid
supply.

FIG. 5. Black dots represent thee-uncertain points withe
=10−7 andN=100. FIG. 6. Velocitiesu and v as a function of timet in arbitrary

units at the center of a two-dimensional duct with expansions at the
ends and with an aspect ratio(total length/cross section) of 20, Rd

=1521, andl,4.
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The Coullet model with constant liquid supplye has a
complicated bifurcation diagram and we choose a valueec in
such a way that to its left there are period-1 solutions, and to
its right a densely chaotic region. We now consider a variable
liquid supply that varies harmonically around a value nearec
with a period which is approximately 1000 times larger than
the characteristic period of the subsequent drop release with
constant liquid supply and with an amplitudeDe chosen in a
way that the water supply does not extend outside the
period-4 window. These conditions allow the system to visit
alternatively a zone of irregular behavior and a zone of pe-
riod 4 in the map of constant liquid supply. The result of the
periodic variation of the water supply is shown in Fig. 7. The
continuous sinusoidal line represents the liquid supply and
the dots the values of the time intervals between successive
drops. As can be clearly seen, the system presents zones of
stable and unstable behavior as for the map of Eq.(2).

IX. CONCLUSIONS

We discussed systems with periodic parameter fluctua-
tions which are driven from regular to chaotic motion and
back. Although simple in its construction, this type of dy-
namics creates very complicated orbits with a complex de-
pendence on control parameters. In computer simulations
and in real experiments, it is impossible to distinguish the
existence of stable complex periodic solutions and of chaotic
solutions in the underlying model, since round-off errors and
noise interact with the dynamics.

We presented two numerical experiments that illustrate
the change of behavior due to a periodic variation of a pa-
rameter with a time scale much larger than the natural time
scale of the system where the discussion of the impossibility
of distinguishing chaos from order is relevant.

Our detailed analysis was based on maps, but all features
are found as well in systems with continuous time. It is also
not relevant to assume sinusoidal variation of the parameter,
so that we expect such a behavior to be rather widespread.
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